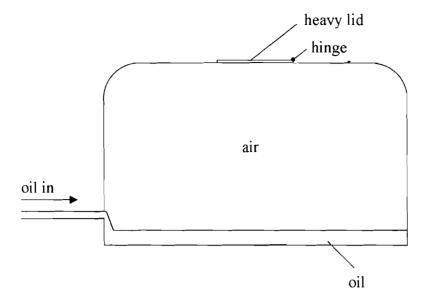
Matter Practice Questions

	the results.		7
	Mass (kg)	Volume (m ³)	
copper	1.125	0.000 125	
iron	1.728	0.000 216	
(i) Calculate the	e density in kg/m ³ for coppe	er and iron.	
	Density	y of copper =	kg/m ³
	Density	y of iron =	kg/m ³ (2)
(ii) Which of the	e two materials is less dense	e?	
			(1)
(iii) Which of the	e two cubes has less weight	?	
			(1)
) How would you	find the volume of the meta	ıl cubes?	
			(3)

Octok	per	2005)	Leave blank
4. (a)		he 17th century a scientist called Robert Boyle carried out experiments on gases. found that the relationship	
		$p_1V_1 = p_2V_2$	
		rue when p_1 and V_1 are the initial pressure and volume of the gas and p_2 and V_2 are final pressure and volume of the gas.	
	(i)	What two things must remain constant for this relationship to be true?	
		1	
		2(2)	
	(ii)	Some gas has a volume of 1.2 m ³ at a pressure of 120 kPa. Calculate its volume, in m ³ , when the pressure is increased to 250 kPa.	
		Volume = $ m^3 $ (2)	
(b)	(i)	Convert a temperature of -273 °C into kelvin.	
		Temperature = K (1)	
	(ii)	What is special about this temperature?	
		(1)	
(c)	incr	ne gas is trapped in a metal cylinder. The temperature outside the metal cylinder reases.	
	Exp	plain how this affects the particles in the gas and what effect this has.	
			014
		(3)	Q14
		(Total 9 marks)	


(May 2006)	Leave blank
6. The diagram shows the measurements of a building block.	
The building block weighs 120 N. It stands as shown. (a) Calculate the area in m² under the building block.	
$Area = \dots m^2$	
Alea –	
(b) (i) State the equation which relates area, force and pressure.	
(1)	
(ii) Calculate the pressure in Pa under the building block.	
Pressure = Pa (2)	Q6
(Total 5 marks)	
(Total 5 marks)	

	Leave blank
New volume =	
State two assumptions you have made in your calculation. 1	
(2)	
Did the density of the air in the balloon decrease, stay the same or increase when the student took the balloon to the bottom of the pool?	
i) Explain your answer.	
(2)	Q14
(Total 8 marks)	
	balloon to the bottom of the pool. The pressure inside the balloon increases by 20 kPa. Calculate the new volume of the balloon. New volume =

Q5

(Total 5 marks)

5. The diagram shows an oil storage tank. It has a heavy, hinged lid. The tank is nearly empty. When oil is pumped in this increases the pressure of the air inside the tank.

(a)	What happens to the force on the inside of the lid when the pressure increases?
	(1)
(b)	Name another force which acts on the lid.
	(1)
(c)	Name the force which acts at the hinge as the lid opens.
	(1)
(d)	When the lid opens, some of the air escapes from the tank. What happens to the pressure of the air in the tank?
	(1)
(e)	On a hot day the temperature increases. What difference, if any, will this make to the speed of the molecules in the air in the tank?
	(1)

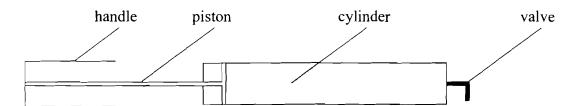
ovember 2006 6. Read the info		e hov			Leave
o. Read the find	ormanon in in			1	
	Water I	poils at 100 °C and fr	reezes at 0°C.		
	Ethano	l boils at 78°C and f	reezes at –117 °C.		
(a) Use these	e words to co	omplete the table.			Absorbing to the control of the cont
		gas liquid	solid		
		at 80 °C	at −173 °C		
	water	_			
	ethanol				
			1		
(b) Describe	the moveme	nt, if any, of the partic	cles in water and etha	unol	
	1 7 3°C				
					The state of the s
				(1)	
(ii) at -2	273°C.				1
,					
				(1)	
	the temperatu	ire at which the kelvin	n scale starts?	(1)	
	the temperatu	re at which the kelvin	n scale starts?	(1)	
	the temperatu	re at which the kelvin	n scale starts?	(1)	Q6

	average kinetic energy of its molecules		7	
	celsius temperature	<u> . </u>	-	
			-	
	pressure at constant volume			
				(1)
	ndbook recommends that the tyre pressures should be done when the tyres are cold.	ould be ch	ecked. Expl	ain why
		•••••		
				• • • • • • • • • • • • • • • • • • • •
The press	sure in a tyre at a temperature of 290 K is 200	kPa Calc	ulate the nre	(2)
	sure in a tyre at a temperature of 290 K is 200 to tyre when the temperature is 310 K.	kPa. Calc	culate the pre	,
	e tyre when the temperature is 310 K.		culate the pre	essure in
kPa in th	e tyre when the temperature is 310 K.	sure =		essure in
kPa in th	Pres	sure =		kPa (2)
kPa in th	Prese the relationship between pressure, force and	sure =		essure in
kPa in th	Pres	sure = area. essure in contact with	each tyre is	essure in

Matter Pracitce Questions

Q14

(2)


(Total 8 marks)

(May	20	07)	Leave
10.	Use	e the information in the box to answer the questions.	Olalik
		Absolute zero is -273 °C.	
		The pressure in a gas cylinder is 850 kPa when the temperature is 20 °C.	
		$\frac{p_1}{T_1} = \frac{p_2}{T_2}$	
		T_1 T_2	
	(a)	Convert the temperature 20 °C to the kelvin scale.	
		Temperature = K	
	(b)	Calculate the pressure in the gas cylinder to the nearest $10\mathrm{kPa}$ when the temperature rises to $40^\circ\mathrm{C}$.	
		Pressure = kPa (3)	Q10
		(Total 4 marks)	
		-	
			İ

blank

(May 2007)

16. The diagram shows the structure of one type of bicycle pump.

(a) Circle **two** words in the box which best describe the motion of the molecules in the air in the cylinder.

backwards	constant	fast	forwards
random	regular	slow	steady

(1)

(b)	Explain how the molecules exert a pressure on the inside of the cylinder.
	(3)

$p_1V_1=p_2V_2$ to calculate the pressure in kPa when the air is compressed to a volume of $50\mathrm{cm}^3$. Pressure =	
50 cm ³ . Pressure =kPa (2)	
$Pressure = \dots kPa $ (2)	
	ł
1	
2	
(2)	
(iii) Name the unit which is represented by the symbol kPa.	
(1)	Q16
(Total 9 marks)	